

SANITSER LIFE12 ENV/IT/001095

Deliverable Action D.1

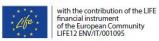
Final Conference Location: SE.TE.C. srl company, Civita Castellana

Author: SE.TE.C. SRL

Date: 10/03/2017

Table of content

Programme	Pg. 3
Presentations	
List of Participants	
Posters	
Pictures	46
Press articles	



1. Programme

1.1. Programme in English

1.2. Programme in Italian

2. Presentation

The presentation of the final conference was unique. The representatives of the various partners (Minerali Industriali, SETEC, GEMICA and LCE) presented the project with the results, alternating in the display of their expertise and showing the data obtained to the guests.

SANITSER

SANITaryware production: use of waste glass for Saving Energy and Resources

Technological innovation as industrial development opportunity

Coordinating beneficiary:

Minerali Industriali S.r.l.

Associated beneficiaries:

G.E.M.L.C.A. S.r.L.

Life Cycle Engineering

SETEC. S.r.l.

www.sanitser.eu

EARLIER STUDIES

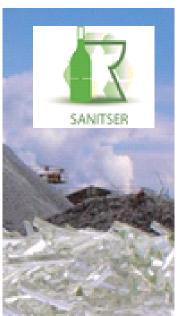
2009: Minerali Industriali and the Earth Science
Department of the University of Milan started a
coll aboration to study the introduction of glass cullet in
partial replacement of Na-feldspar (traditional flux
agent) for sanitary-ware ceramic production.

Problems to overcome:

Eventual changes in rheology of the slips;
 Pyro-plasticity effects on large ceramic bodies;
 Effects of thermal gradient upon firing on large and complex shape bodies having SLG;
 Glaze reformulation to match the new thermal cycles.

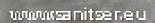
2012: SANITSER PROJECT

Main Project Objectives


Improving the environmental impact of the sanitaryware production process replacing natural raw materials (up to 40-50%) with glass cullet from urban waste disposal and other recycled materials in the ceramic blends formulation.

Recycling of urban waste

Expected results:


SAVING ENERGY: 16-18%

Standard firing temperatures for Vitreous China Sanitaryware are between 1230°C and 1250°C with firing cycles around 16-20 h.

The SANITSER formulation will make possible a firing cycle between 1150°C and 1190°C with a reduction also of the dwell time at max temperature. The estimated saving of thermal energy is about 16% -18% with firing cycles around 14-16 h.

ENERGY SAVING - ECONOMIC BENEFIT

The state of the s	Type of Kiln	Medium nº of fired pieces per day	Consumption of energy for each kg of fired product [kcal]	Energy saving of 18% [kcal/kg of fired product]	Energy saving [kcel/day] (Considering a medium weigh of one ceramic article of 20 kg)	Energy saving [Nm² of methane per day]	Energy Saving in €/day (Considering methane cost of 0,35 €/Nm²)
	Shuttle	400	2100-2400	≈396	3.168.000	386,3	135,1
	Tunnel	1000	1200-1600	≈250	5.000.000	609,8	213,4

ENERGY SAVING - ENVIRONMENTAL BENEFIT

Decrease of firing temperature of about 80-100°C makes possible a significant reduction of gas emissions form the kilns during the firing process.

Type of kiln	Saving of Nm² of methane penday	Saving of Nm² of methane peryear	Reduction of emission of CO ₂ [kg/year]
Shuttle (400 piece)	386,3	84.986 Joors idening 220 working days per year)	169.972
Tunnel (1000 pieces)	609,8	201.234 ponsidering 330 working days per year)	402.468

SAVED PRIMARY RESOURCES: 40-50%

In the formulation of bodies and glazes studied as ignificant part of recycled glass, granite and vitreous chinas craps were used in order to reduce the total consumption of natural raw materials up to about 40% -50%. The intent is also to reduce production costs, rising industrial competitiveness and promoting a shift from a traditional man-labor-oriented to a technology-driven manufacturing.

RAW MATERIALS INVOLVED IN TESTING

Re-use of recycled products and production waste for ceramic industry

GLASS CULLET WASTE FROM URBAN WASTE DISPOSAL: 100% RECYCLED POST CONSUMER As defined in section 7.8.1.1 c, UNI EN ISO 14021

SPECIAL GLASSES FOR GLAZE (tw monitor, lamp, neon, boric glass): 100% RECYCLED PRE and POST CONSUMER
As defined in section 7.8.1.1 c, UNI EN ISO 14021

RAW MATERIALS INVOLVED IN TESTING

Re-use of recycled products and production waste for ceramic industry

CERAMIC PITCHER: 100% RECYCLED PRE CONSUMER As defined in section 7.8.1.1 c, UNI EN ISO 14021

Ceramic pitcher BVC - vitreous china

Minerali Industriali Group has facilities to recycle the ceramic pitcher throughout Italy, Europe and Latin America.
The ceramic pitcher is regularly recovered, crus hed and ground, to be reused alone or in mixture, as a component of the ceramic

Benefits in using ceramic pitcher:

 The pitcher is not completely inert → slight fluxing action that allows the felds par content of the body to be reduced while maintaining thes ame degree of vitrification

blends

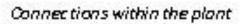
- High alumina content (23-24% by weight) → allows the vitrification/deformation ratio to be optimised, if used to suitably replace quartz and feldspar
- By using scrap in place of a portion of the quartz it is possible to vary the
 coefficient of expansion of the body and above all to mitigate the negative
 impact of α→β quartz transformation, especially in the case of rapid firing

RAW MATERIALS INVOLVED IN TESTING Re-use of recycled products and production waste for ceramic industry

F60PB: 100% RECYCLED PRE CONSUMER As defined on section 7.8.1.1 c, UNI EN ISO 14021

Na/K-feldspar resulting from the recovery and treatment of the ornamental stone "wastes", obtained from the historical white granite quarries Montorfano and pink granite Baveno, in the north of Lake Maggiore. In 1992 (renovated in 2012) the Mining Concessions for the exploitation of feldspar and associated minerals are issued by the Mining District of Turin, with mining projects aimed exclusively at the recovery of the landfills material.

The result is an innovative project that converts something considered a mining waste into a raw material, creating a benefit to the environment avoiding the opening of new mines.


MINERALI INDUSTRIALI PILOT PLANT

Installed and covered magnetical separator

Drier with connection to the improved de-dusting system

Main actions of SANITSER project:

- Definition of new formulations for slips bearing glass;
- Definition of the new production processes using the modified firing time-temperature cycles at lower temperature;
- Glaze composition revision in the light of newfiring time temperature cycles;
- Determination of environmental impact parameters (Life Cycle Assessment).

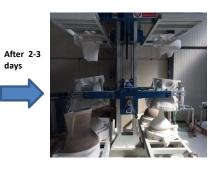
Definition of new formulations

Among all the formulations of bodies and glazes containing glass and other recycled materials tested during the project, we identified those most suitable for production and capable of ensuring the technological characteristics of the finished ceramic pieces, when compared with current standards required by the market.

To define the new compositions we also considered the content of recycled materials.

- SANITSER 13 slip contains more than 40% of recycled materials (glass, pitcher and granite);
- PSI 113 glaze contains more than 15% of recycled glass.

SETEC PILOT PLANT


Ball clay dissolving first phase preparation

Kaolin + other raw materials dissolving second phase preparation

Casting

days

Finishing + inspection

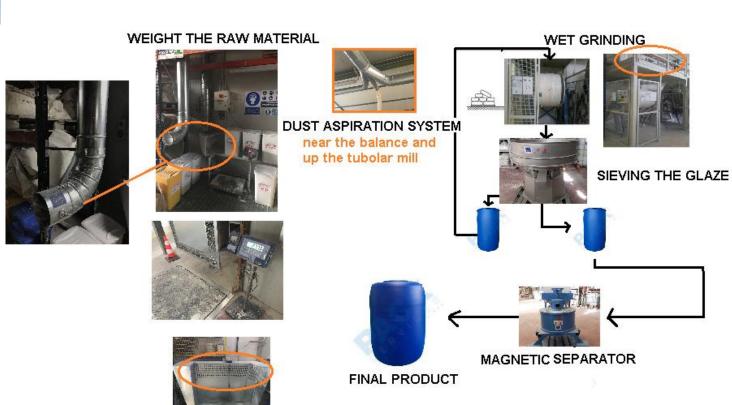
After 1 day

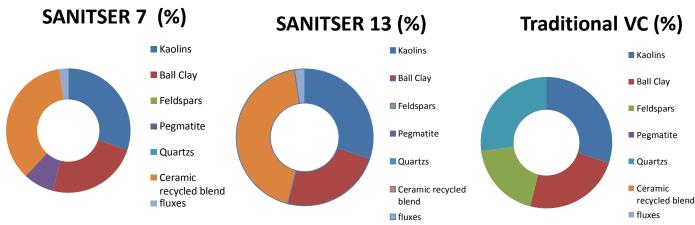
After 1 day

After 1 day

Demoulding and hardening

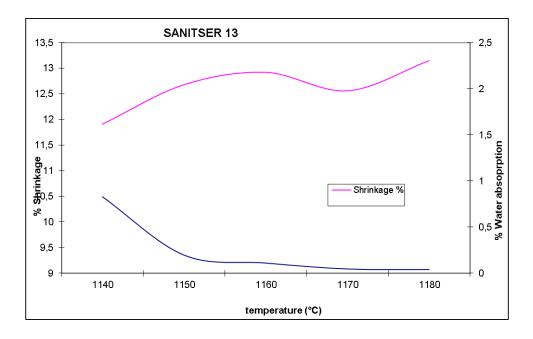
After 1 day




GEMICA PILOT PLANT

Starting from the excellent results obtained with Sanitser 7, which has determined the optimal content of recycled glass, we continued the research with the aim of improving the formulation, further increasing the content of recycled products.

Sanitser 13, whose composition is shown in pictures above and which has a **content of recycled products > 40%**, appears to be the best among all of the compositions tested. Therefore, it was selected as the formulation to be used for the pre-industrial tests to be held at SETEC pilot and then on industrial scale.


The new formulation contains low quantity of quartz!

This is a very important achievement in the aim of reducing the risk connected to the use of substances containing free crystalline silica

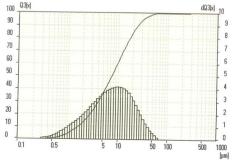
The SANITSER 13 shows an optimal temperature of firing lower than the other bodies, of about 1150-1170°C. The water absorption and total shrinkage values, obtained in the body, show a vitrification plateau in 20-30 degrees.

Temperature (°C)	Shrinkage %	Water absorption %
1150	12.56	0.196
1160	12.68	0.110
1170	12.96	0.05

Table. Characteristic data obtained from Sanitser slip compared with industrial vitreous china slip.

(Each value is the mean of five determinations).

Technical parameters	Industrial slip fired at 1250°C RSD% ≤ 5.0	Sanitser 13 slip fired at 1165°C RSD% ≤ 5.0
Density (g/cm³)	1.800 -1820	1830
Moisture (%)	32-35	34.3
Viscosity (°G)	280-305	240-260
Sodium silicate deflocculant (%)	0.17	/
Sodium carbonate deflocculant (%)	0.07	0.02
Polyacrylate deflocculant (%)	/	0.02
Thixotropy (after 1 minute) (°G)	25-35	10-20
Deformation (mm)	40-43	43
Thickness after 1 h (mm)	6.5-7.0	6.6
Modulus of rupture (MOR) (kg/cm²)	24-25	25.3
Resistance to bending after firing (MPa) (UNI 4543 required a value > 39.50 MPa)	49.5	55.7
Linear fired Shrinkage (%)	12-13	12.6
Water absorption (%) (EN 997 and UNI 4543 required a value < 0.5%)	< 0.5	0.1-0.2



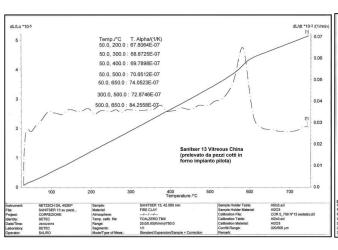
SANITSER

	Date	10-29-2014	Time 18:1	4 Operat	or Mutte	ID 7645	Serial	No. 12	345
Campione : VC Data : 28- Analisi : vi	ETEC s	rl / for SANITSE 4 DA " alimen		IFE					
Measuring Ran	nge		0.31	[µm] - 30	0.74 [um	1	Pump		100
Resolution		6		(17 mm /	114 mm	j	Stirrer		O[tt
Absorption Measurement I	Durentie				12.00 [%		Ultrasoni	C	100
measurement i	Duratio				B [Scans				
Modell Indeper Fraunhofer Cal		n selected.							
Fraunhofer Cal	lculation		ogrammi\a22	32\FRIT	SCH\frit	sch\HIMNT	1 EDS		
Fraunhofer Cal	lculation on Valu	es C:\Pro 0.30 μm	ogrammi\a22 0.71 %		SCH\frits	sch\HIMNT 4.38 %	_1.FPS	1.00	LIM
Interpolation 35.82 %	on Valu	es C:\Pro 0.30 μm 5.00 μm	0.71 % 60.43 %	< 1	0.50 µm 0.00 µm			1.00	
Interpolation 35.82 % 84.66 %	on Valu	es C:\Pro 0.30 μm 5.00 μm 20.00 μm	0.71 % 60.43 % 90.43 %	< 1	0.50 µm	4.38 %	<	15.00	μm
Interpolation 35.82 % 84.66 % 98.60 %	on Valu	es C:\Pro 0.30 μm 5.00 μm 20.00 μm 45.00 μm	0.71 % 60.43 % 90.43 % 99.91 %	< 1 < 2 < 6	0.50 µm 0.00 µm	4.38 % 75.29 %	< <	15.00	µm µm
Interpolatic 35.82 % 84.66 % 98.60 % 100.00 %	lculation on Valu	es C:\Pro 0.30 μm 5.00 μm 20.00 μm 45.00 μm 90.00 μm	0.71 % 60.43 % 90.43 % 99.91 % 100.00 %	< 1: < 2: < 6: < 10:	0.50 µm 0.00 µm 5.00 µm 3.00 µm 5.00 µm	4.38 % 75.29 % 93.97 % 100.00 % 100.00 %	< < <	15.00	hw hw
Interpolation 35.82 % 84.66 % 98.60 %	on Valu	es C:\Pro 0.30 μm 5.00 μm 20.00 μm 45.00 μm	0.71 % 60.43 % 90.43 % 99.91 %	< 1: < 2: < 6: < 10:	0.50 µm 0.00 µm 5.00 µm 3.00 µm	4.38 % 75.29 % 93.97 % 100.00 %	< < < <	15.00 30.00 75.00	hw hw hw
Interpolation 35.82 % 84.66 % 98.60 % 100.00 % Interpolation	on Valu	es C:\Pro 0.30 µm 5.00 µm 20.00 µm 45.00 µm 90.00 µm 150.00 µm	0.71 % 60.43 % 90.43 % 99.91 % 100.00 % 100.00 %	< 11 < 20 < 6 < 20 < 20 < 20 < 20 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 <	0.50 µm 0.00 µm 5.00 µm 3.00 µm 5.00 µm 0.00 µm	4.38 % 75.29 % 93.97 % 100.00 % 100.00 %	< < < < < < < <	15.00 30.00 75.00 125.00	hw hw hw
Interpolation 35.82 % 84.66 % 99.60 % 100.00 % Interpolation 10.00 %	on Value	0.30 µm 5.00 µm 20.00 µm 45.00 µm 45.00 µm 150.00 µm 150.00 µm 150.00 µm	0.71 % 60.43 % 90.43 % 99.91 % 100.00 % 100.00 % grammi\a22 20.00 %	< 10 < 6 < 10 < 20 32\FRIT	0.50 µm 0.00 µm 5.00 µm 3.00 µm 5.00 µm 0.00 µm SCH\frits 2.82 µm	4.38 % 75.29 % 93.97 % 100.00 % 100.00 %	< < < < < < < <	15.00 30.00 75.00 125.00	hw hw hw hw
Interpolatic 35.82 % 84.66 % 98.60 % 100.00 % Interpolatic 10.00 %	on Value	es C:\Pro 0.30 µm 5.00 µm 20.00 µm 45.00 µm 90.00 µm 150.00 µm es C:\Pro 1.64 µm 5.68 µm	0.71 % 60.43 % 90.43 % 99.91 % 100.00 % 100.00 % grammi\a22 20.00 % 50.00 %	< 11 < 2: < 6: < 20 < 20 < 20 < 32 \ FRIT < 2 < . < < 3 < 3 < 3 < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < < 3 < < 3 <	0.50 µm 0.00 µm 5.00 µm 3.00 µm 5.00 µm 0.00 µm	4.38 % 75.29 % 93.97 % 100.00 % 100.00 % 100.00 %	< < < < < < < < < < < < < < < < < < <	15.00 30.00 75.00 125.00 250.00	hw hw hw hw
Interpolation 35.82 % 84.66 % 99.60 % 100.00 % Interpolation 10.00 %	on Value	0.30 µm 5.00 µm 20.00 µm 45.00 µm 45.00 µm 150.00 µm 150.00 µm 150.00 µm	0.71 % 60.43 % 90.43 % 99.91 % 100.00 % 100.00 % grammi\a22 20.00 %	< 11 < 20 < 60 < 200 < 200 < 200 < 32\FRIT < 200 < 32\FRIT < 32 < 32 < 32 < 32 < 32 < 32 < 32 < 3	0.50 µm 0.00 µm 5.00 µm 3.00 µm 5.00 µm 0.00 µm SCH\frits 2.82 µm	4.38 % 75.29 % 93.97 % 100.00 % 100.00 % 100.00 % ch\10_90.F 30.00 %	< < < < < < < < < < < < < < < < < < <	15.00 30.00 75.00 125.00 250.00	hw hw hw hw

Micron	% Fraction passing for SANITSER 13	% Passing Fraction for VC Standard
5	35.82	41.39
10	60.43	62.83
25	90.43	89.88
30	93.97	93.89
45	98.60	99.12
63	99.91	99.99

Percentage of particles	Average diameter (micron) SANITSER 13	Average diameter (micron) VC Standard
D50	7.54	6.61
D90	24.55	25.14

Vitreous China body: SANITSER 13 granulometric distribution



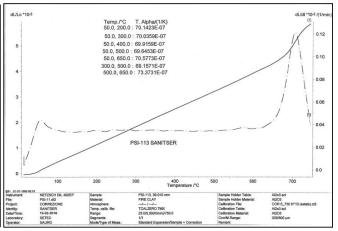
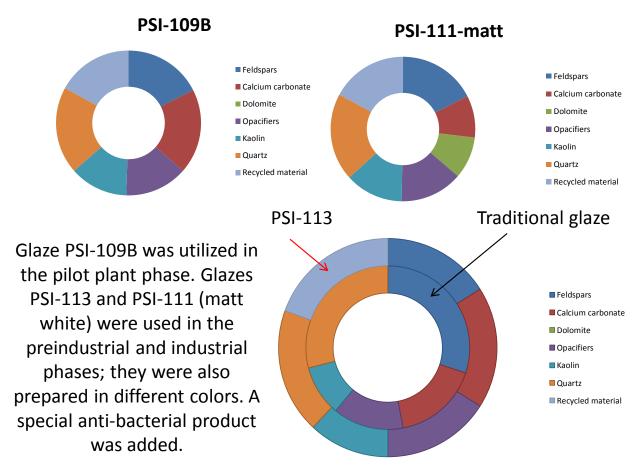
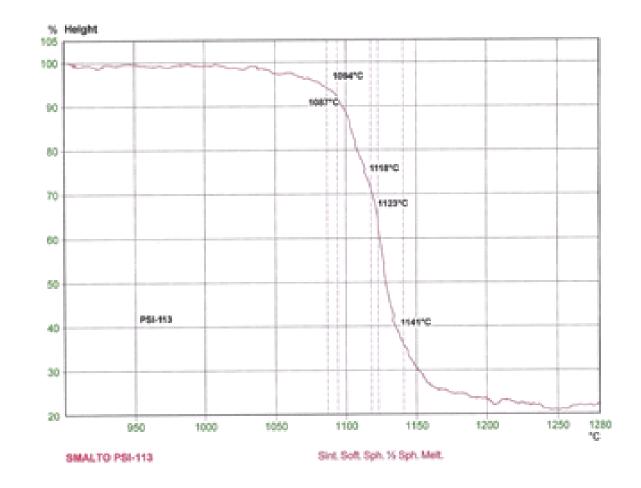


Table. Comparison of dilatometric coefficients obtained from Sanitser 13 slip compared with industrial standard vitreous china slip.

Temperature range (°C)	Dilatometric coefficient α in Vitreous china standard (1/K)	Dilatometric coefficient α in SANITSER 13 body (1/K)	Dilatometric coefficient α in SANITSER PSI- 113 (1/K)
50-200	65.6 x10 ⁻⁷	67.8 x10 ⁻⁷	70.1 x10 ⁻⁷
50-300	64.5 x10 ⁻⁷	68.9 x10 ⁻⁷	70.0 x10 ⁻⁷
50-400	65.5 x10 ⁻⁷	69.8 x10 ⁻⁷	69.9 x10 ⁻⁷
50-500	66.7 x10 ⁻⁷	70.7 x10 ⁻⁷	69.6 x10 ⁻⁷
50-650	71.2 x10 ⁻⁷	74.1 x10 ⁻⁷	70.6 x10 ⁻⁷
300-500	69.5 x10 ⁻⁷	72.9 x10 ⁻⁷	69.2 x10 ⁻⁷
500-650	84.6 x10 ⁻⁷	84.3 x10 ⁻⁷	73.3 x10 ⁻⁷



The challenging research to find a new glaze that can be used with the new slip formulation and processed with the new firing cycle ended with the glaze **PSI 113**, whose composition is shown in the table below and which has a **content of recycled products >15%**.



PSI-113 enamel was chosen for the industrial production, since it is the one which provides the best tone of white. It is also even the fuse. The higher fusibility of the glaze (a lower softening and melting temperature) allows to fire the sanitary ware pieces at 1165 °C.

Preservation of surface brightness and luminosity (norm UNI 4543)

(1) alkalis contact (NaOH 5%) at 160°C for 30m;

(2) acids contact (HCl 50% and H_sSO_s 1:3 at room temperature and for 72h; (3) Resistance to thermals hods (5 cycles repeated of heating at 110°C in a calcium-chloride water-solution and quenching in ice-water;

(4) Resistance to water and vapour.

- (5) Dyes contact at room temperature and for 72h;
- (6) Resistance to abrasion by Al₂O₅-sand for 210s:

Test	Results
alkalis contact (1)	Any loss of reflectivity on the glaze surface;
ecids contect (2)	Any loss of reflectivity on the glaze surface;

Test	Results
Resistance to thermal shocks (3)	No sign of crazing, peeling or settling-
	crack in the samples analysed.
Resistance to water and vapour (4)	Nosign of crazing, peeling or settling
	crack in the samples analysed.

No stain due to chemical materials remain after the
washing and use of cleaning device.
No stain due to chemical materials remain after the
washing and use of cleaning device.
Results
No defects appear, never abrasion

Colorimetric control

Characteristics	PSI-109	PSI-113 glaze	Standard
Characteristics	glaze	I 31 113 gluze	glaze
Luminosity (by Spectroeye)	92.98	94.22	91.22
Brightness (gloss degree at 60°)	143.2	144.6	> 140
Surface roughness (micron)	Ra < 0.10 Rt < 0.83	Ra<0.08 Rt<0.66	Ra<0.12 Rt<0.8

PSI-113

22

Fired pieces (pre-industrial tests in SETEC pilot plant)

Pieces made with SANITSER 13 and glaze PSI-113

Washbasins produced using slip SANTISER 13 and coloured glaze PSI

Washbasin produced using slip SANITSER 13 and glaze PSI with anti-bacterial additive

www.sanitser.eu

Industrial test:

Production of at least **1760** pieces in 8 different shapes

Companies involved in the tests:

KERASAN SRL SCARABEO CERAMICHE SRL ALICE CERAMICA SRL CERAMICA AMERINA SRL

ENVIRONMENTAL ACHIEVEMENTS

Environmental benefits of SANITSER process respect to traditional technology are quantified through a **Life Cycle Assessment (LCA)**, a scientific and internationally recognized methodology.

Reference standards:

ISO 14040:2006 Life cycle assessment - Principles and framework

PCR 2012:01 V 2.01, "Construction products and construction services"

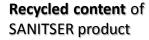
System boundaries:

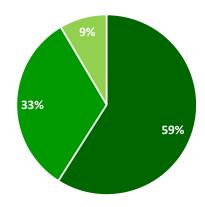

From cradle to industry gate

Comparison:

Traditional production process

SANITSER innovative process – Industrial stage





ENVIRONMENTAL ACHIEVEMENTS

41 %

- Primary material
- Pre-consumer secondary material
- Post-consumer secondary material

ISO 14021:2016

Reduction of **CO_{2eq} emission** from firing:

Reduction of raw materials transportation distances:

- 45 %

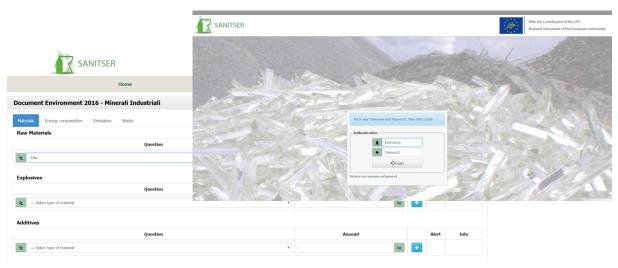
- 18 %

Pre-consumer material:

Material diverted from the waste stream during a manufacturing process, excluded reutilization.

Post-consumer material:

Material generated by households or by facilities in their role as endusers of the product which can no longer be used for its intended purpose.

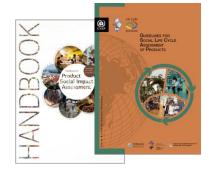

ENVIRONMENTAL ACHIEVEMENTS

Web based tool

During the project a web based tool was designed and developed to:

- Collect quantitative data according to the Life Cycle Assessment (LCA) approach
- Calculate the main environmental indicators for evaluating the performance of the processes involved at different production level

Link: www.sanitser-tool.eu


SOCIAL ACHIEVEMENTS

Social aspects related to the new SANITSER process are assessed throughout the **Social Life Cycle Assessment (SLCA)**, a quali-quantitative recognized approach along the whole life cycle

Reference standards:

Guidelines for Social Life Cycle Assessment of Products (UNEP/SETAC, 2009)

Handbook for Product Social Impact Assessment (Roundtable for Product Social Metrics 2014)

Decrease of risk from silica exposure

Silicosis is a form of **occupational lung disease** occurring after inhalation of crystalline silica dust, potentially present in all production processes involving materials containing silica.

All over the traditional sanitary ware production process, risk of Silicosis can be find in stages involving **quartz** or semi-finished products containing it (e.g. slip), since quartz is mainly composed by Silica in its **crystalline form**.

ECONOMIC ACHIEVEMENTS

Costs over the life cycle of SANITSER process compared to the traditional technology are evaluated using the **Life Cycle Costing (LCC)**. (reference standards: ISO 15685-6:2008).

Total operational and maintenance cost reduction: 5 – 10 %

Reduction is mainly due to:

Raw materials used for body composition

Energy saved during the firing process

TAVOLA ROTONDA 10 MARZO 2017 h 15.00

- Prospettive future di applicazione ed estensione dello studio anche al fire clay
- EPD Dichiarazione ambientale di prodotto
- Problematiche del distretto di Civita Castellana e opportunità legate alla ricerca
- Tool per il calcolo della LCA (se LCE lo ritiene, potremmo eventualmente fare una dimostrazione delle funzionalità del tool che hanno sviluppato)

www.sanitser.eu

Thank you

SANITSE3. List of participants

PROGETTO SANITSER Convegno 10 Marzo 2017

Civita Castellana, 10 Marzo 2017

Pag. __ di___

Nome	Cognome	Azienda	Firma
VITTORIS	COSTA	MINERALI INIS	Vist a
CARLO	CIVATI	MINERALI IND.	VA,
TIZIANO	MESTRNER	MINERAL IND.	p- ph
Ton	Costa		Lost
ALESSANDRO	PAVENT	UNI. TORIMO	Aga
FMRIZIO	BECET!	1775	Dely
LOPIS	LEMBO	(t)	Londo
VEROU:CA	Lilli	1718	Broken Ch!
ANS 1	FERR VEZI	1115	m 21
TABNICO	HASSAM	+Y+IS	Cerpes
Nosena	BEREADI	IDEAC STID	as-
ELEONORA	PARIS	UNIVERSITAT	Da:
EVENA	COCCHETTO	Constitute Mical Van leijer co-sul. Minorali Ind.	TOO
Gerhund	van leger	Van leiger co-sul. Minerali Ind.	along
RAFFA GUA	Cellca	centro celanica	Defade fa
ELISABETTA	MARTINI	SETEC	Elizabetta Hantini
,VCP	Cabre	11 MESCAGOTEL	MALPH
DANIL	Pizesover	conver or	Mule Had
ANDREA	CUSI	CONFINDUSTRIA CERAMICA	Ola Cr
there	Patriqueur	Delta	Elevery.

MINERALI INDUSTRIALI Srl Contact : Daniela Tabacchi

Tel:+39 015 9517057 – Email: info@sanitser.eu

With the contribution of the LIFE financial instrument of the European Community

PROGETTO SANITSER Convegno 10 Marzo 2017

Civita Castellana, 10 Marzo 2017

Pag. __ di___

Nome	Cognome	Azienda	Firma
CIMA A	ANDREA		Cice, Our
THOMAS	CECURELY		Recordiffono
DANGER	PINARIS	<	Durole
CRISTIANO	PES(F)F(()		Pretall Sniton
MATTIA	RoccHi	(Radu Moffen
LURENZO	STRUSIRI		15anto Sante
DIEGO	INNOCEN 31		Surpeine Dergo
PAOGO	ZEZZA		22 Km
MARIALUISA	VALCORNI		ushel
MELISSA	DANIEH		Dowell Molispo,
EUETONORA	ATTO		Eleanora (della
SARA	त्रक्छ।		Son hand
DANILO	DONCRAZIO		Denoroling Davilo
FRANCESCO	PILEUDI		Yronesis Pilliggi
ELISA	RAMBALDI	CENTRO CERANICO	sounds seigh
PAOLA	MANGNI	INETURS - SPICE	Dida fliger
AlessANDAS	Ferrani	IMERYS	1/1/.
HIRKO	ZORFI	IDEAL STONDARD	Both Ulfor
INIVUIO	We ellouss is	C. FLAMINIO	M
FERDINAMOO PASTONELLI	PASTONELLI	e. MIORA	Inte

MINERALI INDUSTRIALI Srl Contact : Daniela Tabacchi

Tel: +39 015 9517057 - Email: info@sanitser.eu

With the contribution of the LIFE financial instrument of the European Community

PROGETTO SANITSER Convegno 10 Marzo 2017

Civita Castellana, 10 Marzo 2017

Pag. ___ di____

Nome	Cognome	Azienda	Firma
405501110	ALESSANDRO		
SILVIO COSTANTILLA	FERM		Shi Colad Wten
DANIELE	MIRAUTA		ande Misata
FEDER : Co	MANONI		Mouse Folico
GOODE FLORIN	LUES		Luca Hour
STAND VALERIO	CASOLi		Volerio Cosoli
LUCA	VALERIANI		Volum hou
CARLO	CHERVISMI		John Miller
amarozo	SIWERI		311 9h
MICHELE	MARDUZZI		Mielle Mouth
MARCO	DEILA CORTE		Morro lelle Cote
SALA	FERRACUT		Consert Son
Febio	CALVANECCI		Ju el
DINOTHA	ALTI'S8141		The
CIULKNA	BONVICINI	CENTROCEDAM	a Coleogo a
GIANLUCA	AHDORNO	KERKSAM	CHAN
VIHCEHZ	PERUGINI	LIBERO PROFESSION.	GA hi
MARCO	CENGONI	GALASSIA SPA	
TUCLIO	LIBERATORE	GALASSIA SPA	- Supply
SERCIO	CARABECLI	MERKS	(04),

MINERALI INDUSTRIALI Srl Contact : Daniela Tabacchi

Tel: +39 015 9517057 - Email: info@sanitser.eu

With the contribution of the LIFE financial instrument of the European Community

PROGETTO SANITSER Convegno 10 Marzo 2017

Civita Castellana, 10 Marzo 2017

Pag. __ di___

Nome	Cognome	Azienda	Firma
Entropo	GKelit Mr	Geni 24	Ra
Nuzza	Yalis	Nave incar	En
BLANGE	GHINECH	Schwarz 8	3 e
ASSINTA	FILARETO	LUF	AP
Siewest	Horst	Miyerali	Unt
Engeri,	SALVAIA	MERYS	25 Solion
EMWA	BAUDO	LŒ	Q5
MARG	PASQUETTI	TLAMIHIS	THE PA
RODERTS	NOFRI	SURDARCS	A.
SANDRA	RAITEONIDI	SPICA	SILRI
MICHEL	LOOSER	VALDAMA	Ulor
910 VBn	CAUSTI	3 GAMAREO	the
SAVINA	PIAMES	DELTZ	Yun
BANIELA	TABACCHI	MUN- INDUSTRIAL	Rawilah 7
BBERTO	LECUREUR	CERTILLS GLOBO	CONI
Govann	SANTINI	MACCHAMOTE	2/16
MAURO	CONTI	F.A.	Toketh 1.
ALESSANDR	BENEW	EURCARGE	120
ELEONORA	FAGGIANI	UNITUS	As of

MINERALI INDUSTRIALI Srl Contact : Daniela Tabacchi

Tel: +39 015 9517057 - Email: info@sanitser.eu

With the contribution of the LIFE financial instrument of the European Community

SANITSI www.sanitser.eu

SANITSER

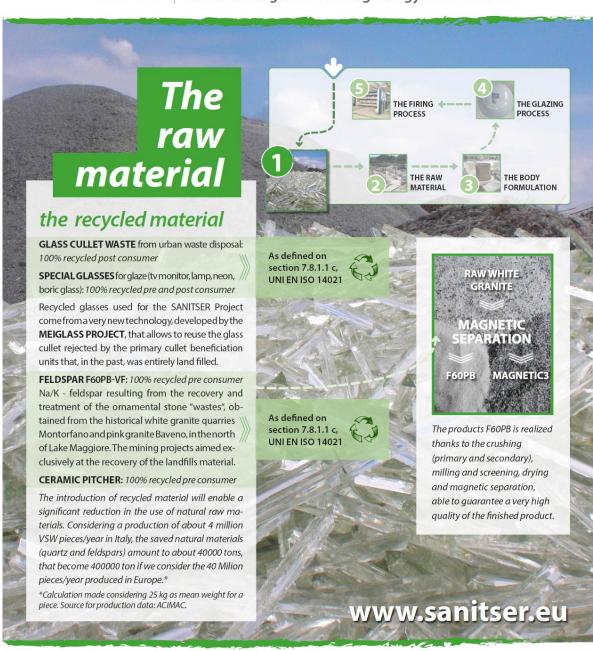
PROGETTO SANITSER

Convegno 10 Marzo 2017

Civita Castellana, 10 Marzo 2017		Pag di		
Nome	Cognome	Azienda	Firma	
SENLINO	ONDOUSM	COLUMBINEM SOU	(1) llen	
EDMUND.	IMBRAH	UNIVERDIT!	Calle.	
Phanindson	Maddala	University	n. Phaningra	
FRANCESCO	Rabica	UNIVERSITA CAPURINO	Mynn Man	
PAOLO	TOHEI	SETEC	feel Town	
EYULA	LANACI	STEC	Em Du	

MINERALI INDUSTRIALI Srl
Contact : Daniela Tabacchi
Tel : +39 015 9517057 — Email : info@sanitser.eu

With the contribution of the LIFE financial instrument of the European Community



4. Posters

Were printed for the final conference of the SANITSER project five explanatory posters and SANITSER exhibited in the SETEC pilot plant.

SANITARYWARE PRODUCTION

use of waste glass for saving energy and resources

SANITARYWARE PRODUCTION

use of waste glass for saving energy and resources

SANITARYWARE PRODUCTION

use of waste glass for saving energy and resources

SANITARYWARE PRODUCTION

use of waste glass for saving energy and resources

Pictures

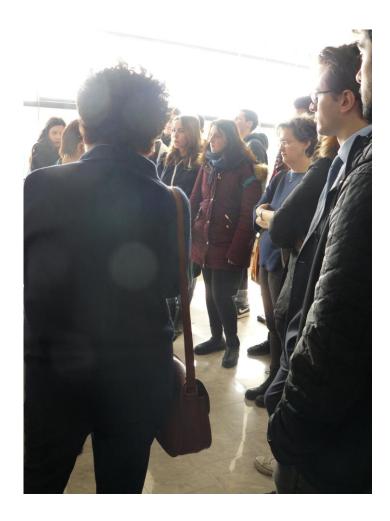
SANITSER

Coffee break zone in pilot plant

SANITSER Posters disposition in pilot plant

SANITSER

Laboratory SETEC visit


SANITSER

Round table future prospective

6. Press articles

Il vetro rivoluziona la ceramica

▶L'impiego del materiale riciclato negli impasti porterà a forti riduzioni dei costi produttivi e benefici per l'ambiente è già stato presentato alle aziende del distretto civito

▶Il progetto Life saniter, cofinanziato dall'Unione et

INDUSTRIA

Si aprono nuovi orizzonti per la ceramica del comparto sanitario, prodotta nel distretto industriale di Civita Castellana. La novità arriva dall'utilizzo del vetro
riciclato negli impasti di base,
che spalanca scenari molto interessanti soprattutto per quello
che riguarda i risparmi nel costi
di produzione, benefici per l'ambiente e ricadute sull'impatto sociale.

biente e ricadute sull'impatto sociale.

Lo dicono i dati finali del progetto Life Saniter, cofinanziato
dalla Unione europea, iniziato
nel 2013 e presentato nei glorni
scorsi alle imprese del comprenstitoriali. A illustrario le aziende
promotrici Minerali Industrali,
Gemica, Setec Group e Life Cycle
engineering, che hanno portato
a termine la ricerca.

Gli obiettivi iniziali sono stati
tutti confermati dai risultatti. l'introduzione di materiali riciclati
fino al 40% negli impasti - e di
quasi il 20% nello smalto - comporta un notevole risparmio di
risorse primarie; riduzione del
ciclo di cottura di circa 80-100

SI RIDUCE L'IMPIEGO DELLA SILICE **NEI TEST CON CICLO** TERMICO A BASSA **TEMPERATURA**

gradi rispetto a quello tradizio-nale, con una conseguente ridu-zione dell'emissione di Co2 pari al 18%. Oltre a questo, viene regi-strata una diminuzione del ri-schio connesso all'esposizione dei lavoratori alla silice.

del lavoratori alla silice.

Il tutto porta a una consistente riduzione dei costi operativi. Il progetto ha visto una prima fase di sperimentazione in laboratorio, una seconda fase sugli impianti pilota costruiti dalle aziende partner appositamente per il progetto, ed una terza fase di test pre-industrial i endustriali realizzabile grazie alla partecipazione di quattro aziende: Kerasan, Scarabeo, Ceramica Alice, Ceramica Amerina, le quali hanno permesso la produzione di circa 2000 pezzi.

Irisultati sono stati presentati

permesso la produzione di circa 2000 pezzi.

I risultati sono stati presentati da Daniela Tabacchi (della Minerali Industriali che fornisce materie prime al settore) Elisabetta Martini (Settee e Gemica) Assunta Filareto (Leo). Per l'occasione sono state aperte le porte dell'impianto pilota della Setec, nella quale sono stati visionati i pezzi prodotti durante i test portati in cottura con il ciclo termico a bassa temperatura.

Successivamente si è svolta anche una tavola rotonda, moderata dall'ingegner Domenico Fortuna della Setec. Erano presenti Raffaella Cerica (per il Centro ceramico) e Gianni Calisti (Federlazio), oltre a una delegazione di studenti del liceo scientifico di Civita Castellana.

Ugo Baldi

CIVITA CASTELLANA La presentazione dei risultati del progetto Life saniter

Civitella d'Agliano

Al via nuova cava. «Con la videosorveglianza»

Al Via Miliova Ca
Civitella d'Agliano, partono i
lavori alla cava in località
Perazzeta. La ditta Fratelli
Nocchi ha firmato la
convenzione col Comune per
dare l'avvio al progetto su
circa 10 ettari compresi tra
l'autostrada e l'area di
servizio Tevere Est.
"Abbiamo inserito numerosi
paletti in modo da poter
controllare cosa entra e cosa
esace», spiega il sindaco
Giuseppe Mottura. Intanto, il
comitato Tutela Valle del
Tevere-Alto Lazio ha lanciato
una colletta tra le famiglie e le
associazioni di Civitella e

servono 22mila per la servono 22mila per la parcella a Vanessa Ranieri, avvocatessa ambientalista elegale Wwf nel processo contro Manlio Cerroni (già ingaggiata contro la cava a poche centinaia di metri, in località Ontaneto, poi scongiurata perché la Socim ha rinunciato al progetto). «La ditta Fratelli Nocchi-afferma Mottura – ha tutte le carte in regola per procedere. L'autorizzazione fu pubblicata sul bollettino regionale a febbraio del 2016, quindi c'era un anno di tempo per avviare i lavori. Abbiamo per avviare i lavori. Abbiamo

inserendo un impianto di videosorveglianza per monitorare il passaggio dei camion e la sistemazione della strada installando un semaforo. Il progetto non prevede un ripristino, pertanto una volta finiti gli scavi rimarrà un laghetto». Non come avvenuto nella vicina località Pascolaro, dove i Fratelli Nocchi sono stati imputati per traffico illecito di rifiuti in un'area di 142 ettari (processo penale prescritto), destinata invece a bonifica.

F. Lup.

Incidenti

Cassia nord e C due le persone

Due incidenti strad di poche ore sulle si Tuscia. Due i feriti, trasportati all'ospe Belcolle. Il primo è Corchiano poco pri l'auto condotta da la vibalta mentra èribattata mentrevia della Repubblic
direzione di piazza
nei pressi del centr
Soccorsa prima da
poi dagli uomini di
trasferita in elicott
all'ospedale del caj
te cure del caso. Il trimasto bloccato
sono arrivati anch
carabinieri per i ri
Il secondo incident
èverificato nel pripomeriggio a Vitet
Cassia nord, all'alt
mobilificio. Alla gi
vettura c'era un'ot
Bolsena, che non h
ferite gravi ma ès
comunque traspoi
ospedale a Belcolik
personale del Il8.
ja cecertamenti delc
intervenire sul po
gli uomini dei vigli
già impegnati in ui
intervento. Anche
stabilire la dinami
intervento. Anche

